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1 Abstract

In this project, the vortex panel method was used to simulate flow conditions around a 2-
dimensional circular cylinder by using panels of equal length with linearly varying strengths
such that the solution is continuous from panel to panel. Particularly, the pressure distribution
around a circular cylinder was evaluated using 32, 64, and 128 panels with the Kutta condition
imposed at θ = 180◦ and θ = −150◦. The method of panels pressure distribution was compared
to the pressure distribution found analytically using potential flow theory. Unsurprisingly, it
was determined that the method of panels solution approached the analytical solution as the
number of panels increased. Finally, the Thwaites boundary layer separation criterion was used
to determine the separation points for both the symmetric and asymmetric cases.

2 Problem Statement

The main problem of this project was to develop a code base that can mathematically approx-
imate a solid boundary of a shape, in this case a cylinder, as well as the flow around it using
doublets arranged in linear panels. By importing different sets of coordinates, the same code
should also be able to evaluate the flow around a non-cylindrical airfoil. Another essential issue
was to simulate the viscous effect of air flowing smoothly off the trailing edge in an otherwise
inherently inviscid approximation. Mathematically, this can be done by imposing a net circu-
lation to force the separation point to the desired location; thus, the Kutta condition can be
used with the method of panels by nulling vortex panel strengths at the trailing edge.

3 Formulation

The general formulation used was adapted from the vortex panel method presented in Founda-
tions of Aerodynamics by Kuethe and Chow. The potential function for the combined field of
the uniform flow and vortex panels is represented by:
ψ(x, y) = Uxcos(α) + Uysin(α) +

∑
j

∫
j

γsj
2π
tan−1( y−yi

x−xj )dsj.

The vortex strength varies linearly along the length of the panels: γ(sj) = γj + (γj+1 − γj) sjSj
.

Since the normal velocity at the panel control points must be zero: ∂ψ
∂n
|i = 0,

implementing the previous equations results in solving the following matrix equation to find γi:∑m
j=1(Cn1ijγj +Cn2ijγj+1) = 2πU(sin(θi − α)) where the coefficients are defined in the Project

Spec. The Kutta condition is incorporated with γ
′
1 + γ

′
m+1 = 0. After which, the tangential ve-

locities and pressure coefficients are solved for at each panel’s control point with the following:
vi = cos(θi − α) +

∑m+1
j=1 Aijγ

′
j and cpi = 1− v2

i .
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To find the separation points, Thwaites boundarly layer separation criteria was used by de-
termining which points along the cylinder’s surface caused K + 0.09 to be at a minimum in
Thwaites equation: K = 0.45

U6
e

dUe

dx

∫ x
0
U5
e (ξ)dξ

4 Implementation

Method: Project2(fileName)
The Project2(fileName) method served as the main and only MATLAB method in the code base.
All the calculations were taken care of inside of this method. However; in hindsight, it would
have been better to divide the code into more sections. The fileName input to this method is
the file name of a .txt file with (X, Y ) coordinates of an airfoil in the same format as .txt files
downloaded from airfoiltools.com. The code then reads the .txt file into MATLAB matrices, and
re-arranges it to a format that will work with the rest of my code. Next, I determine how many
panels to use based on the number of boundary points given in the .txt file, and determined the
midpoints of the boundary points to use as control points for the following calculations. Using
the equations given in the Project Spec and the aforementioned Textbook, Cn1ij , Cn2ij , and the
right hand side of the equation were found such that γ was solved for using MATLAB’s backslash
operator. γ was then used to find the tangent velocity at each control point and then the
pressure coefficients using the equations mentioned in the Formulation section above. Changing
the Kutta condition was done simply by altering the angle of attack of the cylinder. Once the
pressure coefficient matrix was found, the theoretical pressure coefficients were calculated using
potential flow theory as follows: cp = 1− (2sin(θ) + Γ

2πaU
)2 = 1− (2sin(θ)− 2sin(α))2. These

theoretical values were then plotted along with the method of panels pressure coefficients to
directly compare the two methods. Finally, I found the separation points by implementing
Thwaites criteria (listed in the Formulation section). Specifically, the derivative in Thwaites
criteria was computed using mkfdstencil.m, a function provided on bcourses by Eric. The
integral in Thwaites criteria was computed using the trapz() built in MATLAB method.

5 Results

For the symmetric case, the Kutta condition was enforced at θ = 180◦, the result of which
created a symmetric pressure distribution around the circular cylinder. Specifically, the leading
edges and trailing edges had high pressure regions while the top and bottom surfaces were the
suction surfaces, as can be seen by the cp vs. θ plots below, thus the net lift is zero. In my
code, the Thwaites boundary layer separation criteria predicted separation at θ ≈ 103◦ and
θ ≈ −103◦ relative to the leading edge as the number of panels →∞.

For the asymmetric case, the Kutta condition was enforced at θ = −150◦, the result of
which created an asymmetric pressure distribution that creates lift perpendicular to the orange
horizon in figure 2b. The separation points were calculated to be θ ≈ 106◦ and θ ≈ −99◦

relative to the leading edge as the number of panels →∞.
As seen in figure 1b and figure 2b, as the number of panels increases the shape more closely

approximates a true circular cylinder. Thus, the difference between the potential theory cp
calculation and the method of panels cp calculation becomes increasingly negligible.
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5.1 Symmetric

Figure 1a: Visual representation of the pressure distribution imposed on the cylinder
surface. Blue lines represent negative gauge pressures, red lines are positive gauge pressures,

and green lines are the analytical solutions of the streamfunction at varying levels.

Figure 1b: Plots of cp against radians (θ) and chord (x) as calculated by method of panels
and by potential flow theory. As the panels increase, the method of panels line approaches the

potential theory line.
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5.2 Asymmetric

Figure 2a: Visual representation of the pressure distribution imposed on the cylinder
surface. Blue lines represent negative gauge pressures and red lines represent positive gauge
pressures. The leading and trailing edge are represented by the intersections with the orange
horizon such that lift is perpendicular to the orange line in the direction of negative pressure.

Figure 2b: Plots of cp against radians (θ) and (x) as calculated by method of panels and by
potential flow theory. As the panels increase, the method of panels line approaches the

potential theory line.
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